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Abstract. We study the polarisation properties of the dynamical Stark effect of excitons in 
semiconductor quantum wells. We start from a four-band density matrix theory involving 
the heavy- and light-hole band and the two lowest conduction subbands. The set of equations 
of motion contains the dynamics relevant for both Frohlich-type experiments (pumping with 
a carbon dioxide laser) and the case of pumping a few exciton rydbergs below the exciton 
line. We perform the relevant projections based on excitonic eigenstates and study the 
resulting ‘few-level’ systems. From this we calculate the change in the susceptibility tensor 
with respect to a weak probe beam caused by a pump beam with specified polarisation and 
frequency. 

1. Introduction 

An interesting non-linear optical effect is the so-called dynamical Stark effect of excitons 
in semiconductors, i.e. the modification of the excitonic absorption caused by a strong 
pump beam in the transparent spectral region. Frohlich eta1 [ 1,2] studied experimentally 
the case of an infrared pump beam in resonance with a transition between the exciton 
state considered and a secondary exciton state. In contrast with this ‘resonant’ Stark 
effect, Mysyrowicz et a1 [3] and von Lehmen et a1 [4] studied the ‘non-resonant’ case in 
which the pump frequency is of the order of one or a few exciton rydbergs below the 
exciton line considered. 

Frohlich et a1 [ 1,2] used a three-level model for explaining the resonant effect. As 
for the non-resonant effect the theories reported range from simple dressed-atom 
approaches [5] and two-level models [6] to elaborate Hartree-Fock schemes [7-lo]. 
Most of the theoretical work reported so far does not consider the full valence band 
structure, and so the polarisation properties of the Stark effect are not discussed in any 
detail. Exceptions are the papers by Combescot [ l l ]  and Joffre et a1 [12] who in a 
perturbative treatment derive relevant selection rules for the non-resonant effect, 

In the present paper we shall calculate the polarisation properties associated with 
the different types of dynamical Stark effect. As in most experiments mentioned above, 
we regard the exciton dynamics in a multiquantum well (MQW). The starting point will 
be the electron-hole density matrix theory [ 13, 141 extended to include the necessary 
number of valence and conduction band sublevels as specified in section 2. In section 3 
we treat the resonant (Frohlich-type) effect in a MQW, while the non-resonant effect will 
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Figure 1. Level diagram. The C,,,,, Cuyu8, etPLO 
and D H p H B  are level occupancies. The transition 
densities are YKp18, YKpu, (K = H, L) and C,,,, 
DHpLp The allowed transitions are indicated by 
full arrows, and the forbidden transitions by 
broken arrows. 

Figure 2. Iteration procedure for YCYI;''. The full 
arrows indicate transition densities that do con- 
tribute to polarisation, and the broken arrows 
those that do not contribute. No occupancies con- 
tribute and the infrared transitions are not active. 

be studied in section 4. In order to simplify the algebra we neglect throughout the Fock- 
type exchange integrals in the equations of motion for the density matrices. By neglecting 
these, the analysis is restricted to cases where the pump frequency is not too close to the 
exciton resonance. 

It turns out that in Frohlich-type experiments [ l ,  21 with an infrared pump the 
dominant non-linearity is provided by the pump field acting on the exciton envelope. In 
contrast with this the decisive non-linearity in a Mysyrowicz-type experiment [3,4] is 
due to the Pauli blocking terms in the equations of motion. This distinction also manifests 
itself in the corresponding selection rules. 

2. Four-band density matrix theory 

Let us assume that a set of Bloch functions are given as a result of a band-structure 
calculation for a GaAs-Al,Ga, -,As MQW. For simplicity, we use the band structure in 
a diagonal approximation and the states in the envelope-function approximation for a 
single well. According to the experimental situations [2,3,4,12] we consider only the 
lowest conduction sub-bands for which the indices U and 1 are used for upper (n = 2) and 
lower (n  = l ) ,  respectively. The valence bands considered are the n = 1 sub-band of 
the heavy-hole (index, H) and the n = 1 sub-band of the light hole (index, L), the 
corresponding energy gaps will be fiwH1, fiwHU, etc. We treat the exciton in the two- 
dimensional limit and use r as the relative coordinate in the plane of the well. We apply 
the long-wave limit for the electric field E and may therefore drop the centre-of-mass 
coordinate. The Fock-type exchange integrals [13,14] will be neglected. 

When setting up the four-band model we use Y for electron-hole matrices, D for 
hole-hole matrices and C for electron-electron matrices (figure 1). The equations of 
motion then take on the form 
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The propagation operators are 
h~~~ = h a K l  - (h2/2ptK)[a2/ar2 + (I/r)(a/ar)] - e2 /4mxor  + eE * r 
h ~ ~ , ,  = hmKu - (h2/2ptK)[d2/ar2 + (I/r)(a/ar)] - e 2 / 4 n m o r  + eE r 
hQlu = ho,, + eE - r 
hQHL = hmHL - eE - r. 

(2a) 
(2b) 
(2c) 
( 2 4  

The index K is equivalent to H or L. The Greek indices specify the total angular 
momentum quantum numbers of the k = 0 Bloch functions and take the values 1 and 2 
corresponding to the Kramers degeneracies. The z axis is normal to the well plane and 
also the quantisation direction for the angular momentum. The transition dipoles MEp 
describe the optical coupling between the lower conduction sub-band and the valence 
band K. tho denotes the transition dipole between the conduction bands 1 (n  = 1) and U 
(n = 2). mo is oriented along z and its magnitude is of the order of 20e 8, for a well width 
w of the order of 100 8,. Evaluating the quantities &?&, using group theoretical methods, 
one arrives at 

(30) 
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Note that transitions from the heavy-hole band to the 1 conduction sub-band are 
forbidden in the case of polarisation along z .  

The polarisation reads 

Following ideas formulated in [ 15-17] we may expand the density matrices in terms 
of stationary exciton state wavefunctions WE (r): 

The summation runs over bound states as well as unbound states of the exciton 
continuum. Note that in (5c)-(5f) it is left open whether the basis functions Y E ( r )  are 
those with heavy holes or light holes (compare also the remark following equation (15)). 

3. Frohlich-type Stark effects 

In our calculation of the resonant Stark effect we assume a pump-and-probe situation 
as described in [2]. The strong pump beam is resonant with the lu transition, olu is much 
smaller than the gap frequencies wK1 and wKU and the frequency w of the weak probe is 
close to oH1 and tuL1. We first consider in this section the effect of the z component of 
the pump field. The influence of the xy components will be discussed in the last part of 
the section. 

From resonance arguments alone, it can be seen that, with infrared pumping, only 
the first four of equations (1u)-(lj) are active. In other words, one can neglect both DC 
and oscillating components of the electron-electron and hole-hole density matrices. 
Furthermore, only the lowest 1s term in the expansion (5a)-(5g) is relevant (unless the 
pump is resonant with a 1s-np transition within an exciton series). Let us denote these 
lowest coefficients asyKplq(t) andyKp,,(t). The relevant equationsof motion then become 

-ihYKpIp + hdkIyKpIp = E * Ln;l$pYk* (O)(llW) + fiOYKpup1 
-ihYKpup + f i d k u Y K p u p ,  = E ' fiOYKpIp 

h d &  = noKl - 4hwRy - ihrZKl 
hcijgu = noKu - 4hwRy - ihr2Ku.  

(60) 
(6b) 

(7a) 
(7b) 

where the excitonic energies with superscript 1s are 
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We have introduced phenomenological dephasing rates r 2 K )  and r 2 K u .  4hwRy is the 
binding energy of the lowest two-dimensional exciton state. Note that, since the elec- 
tron-electron and the hole-hole density matrices are not involved, the exchange inte- 
grals [13, 141 also vanish. So the dominant contributions to the Frohlich-type Stark effect 
are not influenced by exchange-type non-linearities. 

As reported previously [18,19], the equations of type (6a) and (6b) can be solved 
iteratively to infinite order in Ej'" and first order inEpr. For example for the components 
YHlll and YHlul we find that 

= &o( l / f i ) (Egr  + iEyP')Wfi* (O)(l/w) -ifijfi111 + hdfilYfilll 

(8) 
-ihjfiyil + hdfiuyfiyil = moEYyEyl;') 

-ihjgylT1) + f i d ~ l y g y l ~ l )  = moEryfi$l. 
Figure 2 illustrates this iterative procedure. The Fourier transform of yfiY1: l ) ,  

assuming a monochromatic pump, forms a geometric series and can be summed ana- 
lytically [ 181. 

A more attractive procedure for solving (6a) and (6b) is based on Fourier trans- 
formation. We obtain the following integral equation for the Fourier transform)iKplq(w) 
Of YKplq(t): 

which in the present case of monochromatic pump has the solution 
jKplq(W) = [YE* (O)/w]{h(d?u - w p u  - w)/[h2(dfs1 - u)(dku - wpu - w )  

- ~ f i o B ~ ( w p " ) ~ 2 ] } A a $ p  - E'p'(0) (10) 

as also obtained by a summation of the geometrical series in the above iterative procedure 

Equations (6a) and (6b) show that the previously reported simplification of the band 
edge equations (BEES) leading to a three-level system [16] can be carried out further 
because the active parts of equations (la)-(lj) are only the yKpl, and yKpu, inter- 
band transitions (see figure 2). Surprisingly, the inter-sub-band density matrices for lu 
transitions, which are in resonance with the infrared pump beam, are zero (within the 
framework of the approximations applied). 

The result for Fourier transform P(u) of the polarisation (4) reads 

Wille [20] used an expression which is the scalar form of (11). It is seen that the 
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Frohlich-type Stark effect is independent of the polarisation of the probe beam as long 
as EPr is in the plane of the well. This could also be seen from fundamental symmetry 
arguments. 

It is important to note that the above contribution to the dynamical Stark effect 
belongs to a pump beam fully polarised along z .  There is in addition a non-resonant 
Frohlich-type contribution for an xy-polarised pump field. This originates from tran- 
sitions to excitons with px, py symmetry. 

In the case of infrared pumping with xy polarisation, one has to consider the non- 
linearity caused by the E - r term in the electron-hole propagators (20). This term 
activates the contributions yzpq in the expansion (5a) where m stands for x and y 
components of two-dimensional excitonic p states. The dominant term is the 2p con- 
tribution. The relevant set of equations is 

m = x , y  (13b) 
(13c) 

2 m  
-ih%plq + hh&YKpIq = E m  ' m1YKplq 

- i h j K p u p  + h ~ k u Y K p u q  = E  ' mOYKpIp* 
The Is-to-2p dipole matrix element ml appearing in the response equations (13b) is 

of the order e times an exciton Bohr radius, which is more than ten times larger than A,. 
Furthermore the pump frequency in the Frohlich experiment is much closer to the 
frequency of the 1s-to-2p transition than to the gap, and so the Pauli blocking can be 
neglected. The non-resonant Frohlich-type Stark effect via 1s-to-2p transitions is likely 
to explain the spectra observed by Frohlich et a1 using pump polarisation in the plane of 
the well. 

Retaining only 2p states in the sum of (1%) and employing a Fourier transformation, 
one obtains 

where Ey I e, and 03% is the frequency of the lowest two-dimensional p states minus 
the phenomenological damping term i@, . 

Figure 3 compares the resonant and the 'non-resonant' Frohlich-type Stark effects 
according to experimental situations [2,20]. The arrows give the positions of the 1s 
resonances in the unpumped spectra. The agreement with experiments is satisfactory, 
because the fitted value of 6z1 is 60e A. This value is close to e times the Bohr radius of 
the 2d exciton. 

Note that no optical Kerr effect is expected in the case of infrared non-resonant 
pumping. 

4. The non-resonant Stark effect 

In this section we shall discuss the situation in which the pump is not in resonance with 
any transitions either from the ground state or from the exciton level considered. As in 
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Figure 3. Differential absorption change D of a 
GaAs-AI,Ga,-,As MQW of thickness w = 83.5 A 
calculated from (14): (a) with the pump along z 
and (b)  with the pump perpendicular to z .  0 ,  0, 
scanned experimental data from [2] (figure 2(a)). 
The arrows denote the positions of 1s resonances 
in the unpumped spectra. We used the following 
parameter set for both cases: h w ~ ,  = 1.566 eV, 
ho f i  = 1.5827 eV, hug1 = hugu + 110.3 meV, 
hwg  = 1.5718 eV, hw:? = 1.5885 eV, 
hr,,, = fir&, = 1.6 meV, fir2LI = hr:e, = 2.9 
meV, l ~ o E ~ ( w p u ) (  = 5.9 meV, I ~ , E P U ( W ~ ~ ) ~  = 
33.4 meV and therefore A, 3 6m0, A,, = 15e A. 

[12] we assume the polarisation of both pump and probe beams to be in the plane of the 
well. The detuning is assumed to be larger than a few rydbergs because the neglected 
exchange integrals become important for smaller values of the detuning. As the z 
component of the electric field is absent, the relevant equations of motion are those of 
a three-band system involving the valence bands H, L and the lower conduction band 1. 
In this section we therefore drop the indices U, 1. The relevant equations are 

K K / 

-ihDHpLp + ~ ~ Q H L D H ~ L B  = E * ( A  c (afi,yfipA - ~Lpn)) 

-ihDHpHp = E * (C A (fi~py;pA - yHpA)) (-1 

-iiii,,,,, = E  e (c. A (n;ikpytPA - f i k ;  yLpA)). 

(15c) 

-ifiC,, = E * (E (aFKYGKY - YH~,) + C. (a",YEKY - Y L ~ ~ ) )  (15d) 
K K 

(15.f) 

As [ll] we neglect the different reduced mass of excitons derived from the two 
valence bands. We consider a pump beam in the same spectral range as the exciton 
resonance. Then the dominant non-linear effects are due to band filling in which case 
we may neglect the E .  r contributions in the propagation operators C2 and project the 
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Figure4. Third-order iterationprocedure. y ,  cand 
d are the time-dependent expansion coefficients 
according to the 1s projection. The full arrows 
indicate transition densities that do contribute to 
polarisation, and the broken arrows those that do 
not contribute. Occupancies contribute in second 
order. 

- 0 0 5  -- 
I I I 

805 800 795 
Wavelength I nm 1 

Figure 5. Differential absorption change - D of a 
GaAs-AI,Ga, _,As MQW of thickness w = 100 8, 
calculated from (18a)-(18d); the unit nm is used 
according to [12]. The coupling is induced by a ‘+’ 
pump. Theoretical spectra are shown for a ‘+’ 
(-) and a ‘-’ (. . . .) probe polarisation. We 
used the following parameters: TIC = rlK = 
r2HL = 0.3 meV/fi, r2K = 1.52 meV/fi. 
f iwz = 1.548eV and fiw? = 1.559eV. The 
arrows denote the positions of the 1s resonances 
in the unpumped spectra. hwHL = 11 meV and 
fiw,, = 1.456eV. The pump intensity is 
100 MW cm-*. 

BEES to the exciton level considered, i.e. the Is exciton. Unlike the situation in section 
3 it is hardly possible to calculate analytically the response to infinite order in the pump 
field. An illustration of the first steps of an iteration procedure is shown in figure 4. These 
steps are relevant for calculating the third-order susceptibility ~ ( ~ 1 .  This quantity is 
obtained by inserting the Fourier solutions of the projected equations of motion into 

In relation to the experimental situation it is convenient to give results in terms of 
the change Ax of the first-order susceptibility with respect to the probe caused by a 
spectrally narrow pump beam. Since the third-order polarisation is given by 

(4). 

PI3” = Eo 2 x$(wpu, -wpu,  w,EP”cwpu,~PkU*(Wpu)EPI(W) 

Ax,(w) = c x $ ( ~ p u ,  - w p u >  w)EP”(wpu)ER”* (w,,). 

(16) 
i , k J  

we calculate the quantity 

(17) 
1.k 

The tilde denotes Fourier transform. Retaining only the most resonant terms one arrives 
at the following formulae: 

A x x x ( @ )  = aK{(IE!?I2 + IEyI2)kk(w) + bKgi(W)l 
K 



Polarisation of Stark effect of excitons in QWS 5987 



5988 J Schlosser et a1 

The first terms in parentheses in (21a)-(21c) have a double-resonance character and 
describe shifts of the resonances. The second terms in parentheses in (216)-(21e) 
describe Raman-type processes. 

The most interesting components of Ax are the off-diagonal ones. They are relevant 
for two different interesting effects based on linearly and circularly polarised light, 
respectively. 

Using a linearly polarised pump oriented at 45" to a linearly polarised probe beam, 
the optical Kerr effect becomes proportional to &(U). In the MQW with a sizable HL 
splitting,gk(o) isless resonant than&(@) and&(o), and so theexcitonicallyenhanced 
Kerr effect is expected to be weak. 

The situation changes for a circularly polarised pump beam. Let us consider '+' 
oriented pump light: EPu = Eg"(1, i, 0). Then the susceptibility is Xa,gk (o )  for a '+' 
polarised probe and & K ~ K & ( W )  for a '-' polarised probe. The corresponding spectra 
are shown in figure 5. The relative weights for the two polarisation configurations 
and the two resonances depend on the detuning and the HL splitting. In the limit of 
very large detuning, we get the same result as [ l l ,  121. Our analysis shows that the 
detuning dependence is obtained by replacing p = w f i / o t  introduced in 111,121 by 

It is straightforward to calculate the polarisation properties of a GaAs bulk crystal. 
In this case, wHL = 0, and bulk energies and oscillator strengths should be inserted. This 
yields 

(4-i - @ p u > / ( W P  - m p u ) .  

k k ( 4  = g i ( 4  = g i ( 4  (22) 
which is to be inserted in (Ma)-( 18d). In this case the Kerr effect is of the same magnitude 
as the phenomena associated with circularly polarised light. 

Note that additional effects based on the diagonal elements of AX are to be expected, 
depending on linearly polarised pump and probe oriented parallel or perpendicular, 
respectively. 

5. Conclusions 

The dynamical Stark effect in a MQW system exhibits a relatively complex phenom- 
enology with respect to its resonance and polarisation properties. This can of course be 
expected when dealing with a non-linear optical effect in a system intrinsically and 
geometrically anisotropic. In the present paper it is shown how the main features of this 
complexity are accounted for by appropriate density matrix dynamics. As an ordering 
principle we have used the distinction between Frohlich-type effects [l, 21 and 
Mysyrowicz-type effects [3,4]. Experimentally the former are observed with an infrared 
pump. Theoretically the Frohlich type is characterised by the action of the pump field 
on the exciton wavefunction. After the projection to an exciton basis (5a) and (56) the 
Frohlich-type effect therefore depends on dipole matrix elements Ao, A, formed with 
exciton wavefunctions. The non-resonant effect as reported by Mysyrowicz et a1 [3] and 
von Lehmen et a1 [4] with a pump in the visible (or very near infrared) arises from 
the Pauli blocking terms. Therefore the relevant equations (15) contain the electron- 
electron and the hole-hole submatrices C, D. All dipole moments in equations (15) are 
of the inter-band type a!&. 

Let us finally mention a few points that are left open by the present analysis. 

(i) The non-linearities caused by the E - r terms in the electron-hole propagation 
operators (2a) and (26) should be studied more closely, extending formula (14) to the p 
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exciton series and the continuum. This may be important for a complete quantitative 
understanding of the case of infrared pumping and xy polarisation. 

(ii) The exchange integrals from [13,14] should be included in the analysis in order 
to obtain reliable results for the case of small detuning. 

(iii) One should go beyond the approximation assuming a monochromatic pump and 
study pulsed solutions. 
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